Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Blocking lysophosphatidic acid receptor 1 signaling inhibits diabetic nephropathy in db/db mice.

Lysophosphatidic acid (LPA) is known to regulate various biological responses by binding to LPA receptors. The serum level of LPA is elevated in diabetes, but the involvement of LPA in the development of diabetes and its complications remains unknown. Therefore, we studied LPA signaling in diabetic nephropathy and the molecular mechanisms involved. The expression of autotaxin, an LPA synthesis enzyme, and LPA receptor 1 was significantly increased in both mesangial cells (SV40 MES13) maintained in high-glucose media and the kidney cortex of diabetic db/db mice. Increased urinary albumin excretion, increased glomerular tuft area and volume, and mesangial matrix expansion were observed in db/db mice and reduced by treatment with ki16425, a LPA receptor 1/3 antagonist. Transforming growth factor (TGF)β expression and Smad-2/3 phosphorylation were upregulated in SV40 MES13 cells by LPA stimulation or in the kidney cortex of db/db mice, and this was blocked by ki16425 treatment. LPA receptor 1 siRNA treatment inhibited LPA-induced TGFβ expression, whereas cells overexpressing LPA receptor 1 showed enhanced LPA-induced TGFβ expression. LPA treatment of SV40 MES13 cells increased phosphorylated glycogen synthase kinase (GSK)3β at Ser9 and induced translocation of sterol regulatory element-binding protein (SREBP)1 into the nucleus. Blocking GSK3β phosphorylation inhibited SREBP1 activation and consequently blocked LPA-induced TGFβ expression in SV40 MES13 cells. Phosphorylated GSK3β and nuclear SREBP1 accumulation were increased in the kidney cortex of db/db mice and ki16425 treatment blocked these pathways. Thus, LPA receptor 1 signaling increased TGFβ expression via GSK3β phosphorylation and SREBP1 activation, contributing to the development of diabetic nephropathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app