Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect.

Biomaterials 2017 April
For a substance to be used as a drug delivery carrier and tissue inducible material for a target disease, its drug release rate and physical properties should be optimized to facilitate the healing process. We developed multi-tunable hydrogel systems with various physical properties and release behaviors to determine the optimal conditions for bone regeneration. Five injectable poly(phosphazene) hydrogels were developed with different types and amounts of anionic side-chains. The five polymer hydrogels showed considerably different in vitro and in vivo performances for sol-gel phase transition, dissolution/degradation, water uptake, and pore size. Furthermore, bone morphogenetic protein-2 (BMP-2) was loaded into the polymer hydrogels by forming nano-sized ionic-complexes with each polymer. The five types of nanocomplex hydrogels showed completely different BMP-2 release rates. By administering each nanocomplex hydrogel to mouse calvarial, we identified the most adapted nanocomplex hydrogel system for effective bone regeneration. The BMP-2 release rate was the most important factor in effective bone regeneration. Finally, the bone regeneration effect of the optimized hydrogel system was investigated in a critical-sized calvarial defect model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app