Add like
Add dislike
Add to saved papers

MicroRNA-214 inhibits the osteogenic differentiation of human osteoblasts through the direct regulation of baculoviral IAP repeat-containing 7.

Experimental Cell Research 2017 Februrary 16
Osteoblasts and osteoclasts coordinate to monitor the dynamic osteogenic balance between bone formation and bone resorption. Hence, an investigation of the regulatory mechanisms underlying osteogenic osteoblast differentiation will provide more methods for bone repair and bone regeneration. In the present study, human osteoblast hFOB 1.19 cells were cultured. MicroRNA-214 (miR-214) expression significantly down-regulated during the osteogenic differentiation of hFOB 1.19 cells. In addition, miR-214 overexpression by miR-214 precursor transfection markedly inhibited the expression of alkaline phosphatase (ALP), collagen type I α1 (col1α1) and runt-related transcription factor 2 (Runx2), which concomitantly decreased ALP activity and the number of mineralized nodules but promoted the expression of signal transducer and activator of transcription 1 (STAT1), an osteogenesis blocker. We next found that miR-214 inhibited the expression of baculoviral IAP repeat-containing 7 (BIRC7), a member of the inhibitor of apoptosis proteins family. However, BIRC7 overexpression, which was induced by plasmid transfection, notably reversed the inhibitory effects of miR-214, indicating a potential BIRC7-dependent osteogenic differentiation manner mediated by miR-214. Taken together, our results demonstrate for the first time that miR-214 suppresses osteogenesis by targeting BIRC7, providing a possible therapeutic target for bone degenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app