Add like
Add dislike
Add to saved papers

Preparation of Reduced Graphene Oxide:ZnO Hybrid Cathode Interlayer Using In Situ Thermal Reduction/Annealing for Interconnecting Nanostructure and Its Effect on Organic Solar Cell.

A novel hybrid cathode interlayer (CIL) consisting of reduced graphene oxide and zinc oxide (ZnO) is realized in the inverted organic solar cells (OSCs). A dual-nozzle spray coating system and facile one-step in situ thermal reduction/annealing (ITR/ITA) method are introduced to precisely control the components of the CIL, assemble ZnO with graphene oxide, and reduce graphene oxide into in situ thermal reduced graphene oxide (IT-RGO), simultaneously. The ZnO:IT-RGO hybrid CIL shows high electric conductivity, interconnecting nanostructure, and matched energy level, which leads to a significant enhancement in the power conversion efficiency from 6.16% to 8.04% for PTB7:PC71 BM and from 8.02% to 9.49% for PTB7-Th:PC71 BM-based OSCs, respectively. This newly developed spray-coated ZnO:IT-RGO hybrid CIL based on one-step ITR/ITA treatment has the high potential to provide a facile pathway to fabricate the large-scale, fast fabrication, and high performance OSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app