Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Highly Active Three-Dimensional NiFe/Cu 2 O Nanowires/Cu Foam Electrode for Water Oxidation.

ChemSusChem 2017 April 11
Water splitting is of paramount importance for exploiting renewable energy-conversion and -storage systems, but is greatly hindered by the kinetically sluggish oxygen evolution reaction (OER). In this work, a three-dimensional, highly efficient, and durable NiFe/Cu2 O nanowires/Cu foam anode (NiFe/Cu2 O NWs/CF) for water oxidation in 1.0 m KOH was developed. The obtained electrode exhibited a current density of 10 mA cm-2 at a uniquely low overpotential of η=215 mV. The average specific current density (js ) was estimated, on the basis of the electrocatalytically active surface area, to be 0.163 mA cm-2 at η=310 mV. The electrode also displayed a low Tafel slope of 42 mV decade-1 . Moreover, the NiFe/Cu2 O NWs/CF electrode could maintain a steady current density of 100 mA cm-2 for 50 h at an overpotential of η=260 mV. The outstanding electrochemical performance of the electrode for the OER was attributed to the high conductivity of the Cu foam and the specific structure of the electrode with a large interfacial area.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app