Add like
Add dislike
Add to saved papers

Walking on a Vertically Oscillating Treadmill: Phase Synchronization and Gait Kinematics.

Sensory motor synchronization can be used to alter gait behavior. This type of therapy may be useful in a rehabilitative setting, though several questions remain regarding the most effective way to promote and sustain synchronization. The purpose of this study was to describe a new technique for using synchronization to influence a person's gait and to compare walking behavior under this paradigm with that of side by side walking. Thirty one subjects walked on a motorized treadmill that was placed on a platform that oscillated vertically at various frequencies and amplitudes. Synchronization with the platform and stride kinematics were recorded during these walking trials and compared with previously reported data from side by side walking. The results indicated that vertical oscillation of the treadmill surface at frequencies that matched subjects preferred stride or step frequency resulted in greater unintentional synchronization when compared with side by side walking data (up to 78.6±8.3% of the trial vs 59.2±17.4%). While intermittent phase locking was observed in all cases, periods of synchronization occurred more frequently and lasted longer while walking on the oscillating treadmill (mean length of periods of phase locking 11.85 steps vs 5.18 steps). Further, stride length, height and duration were altered by changing the frequency of treadmill oscillation. These results suggest that synchronization to a haptic signal may hold implications for use in a clinical setting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app