Add like
Add dislike
Add to saved papers

Mechanism of anti-Vibrio activity of marine probiotic strain Bacillus pumilus H2, and characterization of the active substance.

AMB Express 2017 December
Vibriosis is a major epizootic disease that impacts free-living and farmed fish species worldwide. Use of probiotics is a promising approach for prevention of Vibrio infections in aquaculture. A probiotic anti-Vibrio strain, Bacillus pumilus H2, was characterized, and the mechanism of its effect was investigated. All 29 Vibrio strains tested were growth-inhibited by H2. The anti-Vibrio substance present in cell-free supernatant of H2 was purified and characterized by reversed-phase HPLC. Minimum inhibitory concentrations of the purified substance, determined in liquid media for various Vibrio strains, ranged from 0.5 to 64 µg/ml. Addition of the purified substance to Vibrio vulnificus culture inhibited cell growth (estimated by OD600). Confocal microscopy and scanning electron microscopy analyses showed that surface structure of V. vulnificus cells was damaged by the purified substance, as reflected by presence of membrane holes, disappearance of cellular contents, and formation of cell cavities. The major mechanism of this anti-Vibrio activity appeared to involve disruption of cell membranes, and consequent cell lysis. The purified anti-Vibrio substance was shown to be structurally identical to amicoumacin A by MS and NMR analysis. Our findings indicate that B. pumilus H2 has strong potential for prevention or treatment of fish vibriosis in the aquaculture industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app