Journal Article
Review
Add like
Add dislike
Add to saved papers

Cellulose: To depolymerize… or not to?

Oxidation of the primary OH groups in cellulose is a pivotal reaction both at lab and industrial scale, leading to the value-added products, i.e. oxidized cellulose which have tremendous applications in medicine, pharmacy and hi-tech industry. Moreover, the introduction of carboxyl moieties creates prerequisites for further cellulose functionalization through covalent attachment or electrostatic interactions, being an essential achievement designed to boost the area of cellulose-based nanomaterials fabrication. Various methods for the cellulose oxidation have been developed in the course of time, aiming the selective conversion of the OH groups. These methods use: nitrogen dioxide in chloroform, alkali metal nitrites and nitrates, strong acids alone or in combination with permanganates or sodium nitrite, ozone, and sodium periodate or lead (IV) tetraacetate. In the case of the last two reagents, cellulose dialdehydes derivatives are formed, which are further oxidized by sodium chlorite or hydrogen peroxide to form dicarboxyl groups. A major improvement in the cellulose oxidation was represented by the introduction of the stable nitroxyl radicals, such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). However, a major impediment for the researchers working in this area is related with the severe depolymerisation occurred during the TEMPO-mediated conversion of CH2 OH into COOH groups. On the other hand, the cellulose depolymerisation represent the key step, in the general effort of searching for alternative strategies to develop new renewable, carbon-neutral energy sources. In this connection, exploiting the biomass feed stocks to produce biofuel and other low molecular organic compounds, involves a high amount of research to improve the overall reaction conditions, limit the energy consumption, and to use benign reagents. This work is therefore focused on the parallelism between these two apparently antagonist processes involving cellulose, building a necessary bridge between them, thinking how the reported drawbacks of the TEMPO-mediated oxidation of cellulose are heading towards to the biomass valorisation, presenting why the apparently undesired side reactions could be turned into beneficial processes if they are correlated with the existing achievements of particular significance in the field of cellulose conversion into small organic compounds, aiming the general goal of pursuing for alternatives to replace the petroleum-based products in human life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app