Add like
Add dislike
Add to saved papers

Nanometric Cutting of Silicon with an Amorphous-Crystalline Layered Structure: A Molecular Dynamics Study.

Materials with specific nanometric layers are of great value in both theoretical and applied research. The nanometric layer could have a significant influence on the response to the mechanical loading. In this paper, the nanometric cutting on the layered systems of silicon has been studied by molecular dynamics. This kind of composite structure with amorphous layer and crystalline substrate is important for nanomachining. Material deformation, stress status, and chip formation, which are the key issues in nano-cutting, are analyzed. A new chip formation mechanism, i.e., the mixture of extrusion and shear, has been observed. In addition, from the perspective of engineering, some specific composite models show the desired properties due to the low subsurface damage or large material removal rate. The results enrich the cutting theory and provide guidance on nanometric machining.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app