Add like
Add dislike
Add to saved papers

A Novel Mouse Model of Staphylococcus aureus Vascular Graft Infection: Noninvasive Imaging of Biofilm Development in Vivo.

Staphylococcus aureus causes very serious infections of vascular grafts. Knowledge of the molecular mechanisms of this disease is largely lacking because of the absence of representable models. Therefore, the aim of this study was to set up a mouse model of vascular graft infections that closely mimics the human situation. A catheter was inserted into the right carotid artery of mice, which acted as a vascular graft. Mice were infected i.v. using 8 different S. aureus strains, and development of the infection was followed up. Although all strains had varying abilities to form biofilm in vitro and different levels of virulence in mice, they all caused biofilm formation on the grafts. This graft infection was monitored using magnetic resonance imaging (MRI) and (18)F-fluordeoxyglucose positron emission tomography (FDG-PET). MRI allowed the quantification of blood flow through the arteries, which was decreased in the catheter after infection. FDG-PET revealed high inflammation levels at the site of the catheter after infection. This model closely resembles the situation in patients, which is characterized by a tight interplay between pathogen and host, and can therefore be used for the testing of novel treatment, diagnosis, and prevention strategies. In addition, combining MRI and PET with microscopic techniques provides an appropriate way to characterize the course of these infections and to precisely analyze biofilm development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app