Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nesfatin-1 modulates murine gastric vagal afferent mechanosensitivity in a nutritional state dependent manner.

Peptides 2017 March
Food intake is regulated by vagal afferent signals from the stomach. Nesfatin-1 is an anorexigenic peptide produced within the gastrointestinal tract and has well defined central effects. We aimed to determine if nesfatin-1 can modulate gastric vagal afferent signals in the periphery and further whether this is altered in different nutritional states. Female C57BL/6J mice were fed either a standard laboratory diet (SLD) or a high fat diet (HFD) for 12 weeks or fasted overnight. Plasma nucleobindin-2 (NUCB2; nesfatin-1 precursor)/nesfatin-1 levels were assayed, the expression of NUCB2 in the gastric mucosa and adipose tissue was assessed using real-time quantitative reverse-transcription polymerase chain reaction. An in vitro preparation was used to determine the effect of nesfatin-1 on gastric vagal afferent mechanosensitivity. HFD mice exhibited an increased body weight and adiposity. Plasma NUCB2/nesfatin-1 levels were unchanged between any of the groups of mice. NUCB2 mRNA was detected in the gastric mucosa and gonadal fat of SLD, HFD and fasted mice with no difference in mRNA abundance between groups in either tissue. In SLD and fasted mice nesfatin-1 potentiated mucosal receptor mechanosensitivity, an effect not observed in HFD mice. Tension receptor mechanosensitivity was unaffected by nesfatin-1 in SLD and fasted mice, but was inhibited in HFD mice. In conclusion, Nesfatin-1 modulates gastric vagal afferent mechanosensitivity in a nutritional state dependent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app