Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Profile of molecular mutations in pfdhfr, pfdhps, pfmdr1, and pfcrt genes of Plasmodium falciparum related to resistance to different anti-malarial drugs in the Bata District (Equatorial Guinea).

Malaria Journal 2017 January 14
BACKGROUND: The emergence of drug resistance in Plasmodium falciparum has been a major contributor to the global burden of malaria. Drug resistance complicates treatment, and it is one of the most important problems in malaria control. This study assessed the level of mutations in P. falciparum genes, pfdhfr, pfdhps, pfmdr1, and pfcrt, related to resistance to different anti-malarial drugs, in the Continental Region of Equatorial Guinea, after 8 years of implementing artesunate combination therapies as the first-line treatment.

RESULTS: A triple mutant of pfdhfr (51I/59R/108N), which conferred resistance to sulfadoxine/pyrimethamine (SP), was found in 78% of samples from rural settings; its frequency was significantly different between urban and rural settings (p = 0.007). The 164L mutation was detected for the first time in this area, in rural settings (1.4%). We also identified three classes of previously described mutants and their frequencies: the partially resistant (pfdhfr 51I/59R/108N + pfdhps 437G), found at 54% (95% CI 47.75-60.25); the fully resistant (pfdhfr 51I/59R/108N + pfdhps 437G/540E), found at 28% (95% CI 7.07-14.93); and the super resistant (pfdhfr 51I/59R/108N + pfdhps 437G/540E/581G), found at 6% (95% CI 0.48-4.32). A double mutation in pfmdr1 (86Y + 1246Y) was detected at 2% (95% CI 0.24-3.76) frequency, distributed in both urban and rural samples. A combination of single mutations in the pfmdr1 and pfcrt genes (86Y + 76T), which was related to resistance to chloroquine and amodiaquine, was detected in 22% (95% CI 16.8-27.2) of samples from the area.

CONCLUSIONS: The high level of mutations detected in P. falciparum genes related to SP resistance could be linked to the unsuccessful withdrawal of SP treatment in this area. Drug resistance can reduce the efficacy of intermittent prophylactic treatment with SP for children under 5 years old and for pregnant women. Although a high number of mutations was detected, the efficacy of the first-line treatment, artemisinin/amodiaquine, was not affected. To avoid increases in the numbers, occurrence, and spread of mutations, and to protect the population, the Ministry of Health should ensure that health centres and hospitals are supplied with appropriate first-line treatments for malaria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app