Journal Article
Review
Add like
Add dislike
Add to saved papers

Vessel pruning or healing: endothelial metabolism as a novel target?

INTRODUCTION: Antiangiogenic drugs were originally designed to starve tumors by cutting off their vascular supply. Unfortunately, when these agents are used as monotherapy or in combination with chemotherapy, they provide only modest survival benefits in the order of weeks to months in most cancer patients. Strategies normalizing the disorganized tumor vasculature offer the potential to increase tumor perfusion and oxygenation, and to improve the efficacy of radio-, chemo- and immunotherapy, while reducing metastasis. Areas covered: This review discusses tumor vascular normalization (TVN) as an alternative strategy for anti-angiogenic cancer treatment. We summarize (pre)-clinical strategies that have been developed to normalize tumor vessels as well as their potential to enhance standard therapy. Notably, we describe how targeting endothelial cell metabolism offers new possibilities for antiangiogenic therapy through evoking TVN. Expert opinion: Several drugs targeting VEGF signaling are now clinically used for antiangiogenic cancer treatment. However, excessive blood vessel pruning impedes perfusion and causes tumor hypoxia, known to promote cancer cell dissemination and impair radio-, chemo- and immunotherapy. Normalized vessels lessen tumor hypoxia, impair cancer cell intravasation and enhance anticancer treatment. New data indicate that targeting endothelial cell metabolism is an alternative strategy of antiangiogenic cancer treatment via promotion of TVN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app