Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Urinary exosome-derived microRNAs reflecting the changes of renal function and histopathology in dogs.

Scientific Reports 2017 January 12
MicroRNAs act as post-transcriptional regulators, and urinary exosome (UExo)-derived microRNAs may be used as biomarkers. Herein, we screened for UExo-derived microRNAs reflecting kidney disease (KD) status in dogs. Examined dogs were divided into healthy kidney control (HC) and KD groups according to renal dysfunction. We confirmed the appearance of UExo having irregular globe-shapes in a dog by immunoblot detection of the exosome markers, TSG101 and CD9. Based on our previous data using KD model mice and the data obtained herein by next generation sequencing of UExo-derived microRNAs in dogs, miR-26a, miR-146a, miR-486, miR-21a, and miR-10a/b were selected as candidate microRNAs. In particular, UExo-derived miR-26a and miR-10a/b were significantly decreased in KD dogs, and miR-26a levels negatively correlated with deteriorated renal function compared to the other miRNAs. UExo-derived miR-21a levels corrected or not to that of internal control microRNAs in UExo, miR-26a and miR-191, significantly increased with renal dysfunction. In kidney tissues, the decrease of miR-26a and miR-10a/b in the glomerulus and miR-10b in the tubulointerstitium negatively correlated with deteriorated renal function and histopathology. Increased miR-21a in the tubulointerstitium rather than in the glomerulus correlated with deteriorated renal histopathology. In conclusion, microRNAs reflecting the changes in renal function and histopathology in dogs were identified in this study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app