Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Review
Add like
Add dislike
Add to saved papers

The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms.

Harmful Algae 2016 April
Historically, phosphorus (P) has been considered the primary limiting nutrient for phytoplankton assemblages in freshwater ecosystems. This review, supported by new findings from Lake Erie, highlights recent molecular, laboratory, and field evidence that the growth and toxicity of some non-diazotrophic blooms of cyanobacteria can be controlled by nitrogen (N). Cyanobacteria such as Microcystis possess physiological adaptations that allow them to dominate low-P surface waters, and in temperate lakes, cyanobacterial densities can be controlled by N availability. Beyond total cyanobacterial biomass, N loading has been shown to selectively promote the abundance of Microcystis and Planktothrix strains capable of synthesizing microcystins over strains that do not possess this ability. Among strains of cyanobacteria capable of synthesizing the N-rich microcystins, cellular toxin quotas have been found to depend upon exogenous N supplies. Herein, multi-year observations from western Lake Erie are presented demonstrating that microcystin concentrations peak in parallel with inorganic N, but not orthophosphate, concentrations and are significantly lower (p<0.01) during years of reduced inorganic nitrogen loading and concentrations. Collectively, this information underscores the importance of N as well as P in controlling toxic cyanobacteria blooms. Furthermore, it supports the premise that management actions to reduce P in the absence of concurrent restrictions on N loading may not effectively control the growth and/or toxicity of non-diazotrophic toxic cyanobacteria such as the cosmopolitan, toxin-producing genus, Microcystis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app