Journal Article
Validation Studies
Add like
Add dislike
Add to saved papers

Development of a new catheter prototype for laser thrombolysis under guidance of optical coherence tomography (OCT): validation of feasibility and efficacy in a preclinical model.

In this feasibility study, a novel catheter prototype for laser thrombolysis under the guidance of optical coherence tomography (OCT) was designed and evaluated in a preclinical model. Human arteries and veins were integrated into a physiological flow model and occluded with thrombi made from the Chandler Loop. There were four experimental groups: placebo, 20 mg alteplase, laser, 20 mg alteplase + laser. The extent of thrombolysis was analyzed by weighing, OCT imaging and relative thrombus size. In the alteplase group, thrombus size decreased to 0.250 ± 0.036 g (p < 0.0001) and 14.495 ± 0.526 mm(2) (p < 0.0001) at 60 min. The relative thrombus size decreased to 73.6 ± 4.1% at 60 min (p < 0.0001). In the laser group, thrombus size decreased significantly to 0.145 ± 0.028 g (p < 0.0001) and 11.559 ± 1.034 mm(2) (p < 0.0001). In the alteplase + laser group, thrombus size decreased significantly (0.051 ± 0.026 g; p < 0.0001; 9.622 ± 0.582 mm(2); p < 0.0001; 47.4 ± 6.1%; p < 0.0001) in contrast to sole alteplase and laser application. The reproducibility and accuracy of the OCT imaging was high (SD <10%). Histological examination showed no relevant destruction of the vascular layers after laser ablation (arteries: 745.8 ± 5.5 μm; p = 0.69; veins: 448.3 ± 4.5 μm; p = 0.27). Thus, laser ablation and OCT imaging are feasible with the novel catheter and thrombolysis combining alteplase with laser irradiation appears highly efficient.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app