Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Interleukin-1β secreted from betanodavirus-infected microglia caused the death of neurons in giant grouper brains.

High interleukin (IL)-1β gene expression was observed in dead giant grouper brains after nervous necrosis virus (NNV) infection. To investigate the neuronal death caused by NNV infection, primary tissue culture of giant grouper brains (pGB) was performed. In NNV-infected pGB cells, the viral capsid protein was detected in both neurons and microglia; furthermore, microglial proliferation and neuronal death were observed. The culture supernatant (CS) of NNV-infected pGB cells contained IL-1β and tumor necrosis factor-α, which were mainly released from the microglia. A new batch of pGB cells was treated with CS, resulting in neuronal death, which could be prevented by blocking the IL-1β in the CS by using anti-IL-1β polyclonal antibodies. Moreover, pGB cells treated with recombinant IL-1β showed microglial proliferation and neuronal death. Thus, NNV infection may activate microglial proliferation and stimulate microglial secretion of IL-1β, which is a critical cytokine responsible for neuronal death in NNV-infected grouper brains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app