Add like
Add dislike
Add to saved papers

Ultra broadband mid-IR supercontinuum generation in Ge<sub>11.5</sub>As<sub>24</sub>Se<sub>64.5</sub> based chalcogenide graded-index photonic crystal fiber: design and analysis.

Applied Optics 2016 December 21
In this paper, we report design and numerical analysis of a Ge<sub>11.5</sub>As<sub>24</sub>Se<sub>64.5</sub> based chalcogenide glass graded-index photonic crystal fiber structure for mid-IR ultra broadband supercontinuum generation. The proposed dispersion engineered photonic crystal fiber offers a zero dispersion wavelength at a pump wavelength of 2.8 μm. To simulate the supercontinuum generation spectrum, the orders of dispersion coefficient up to the ninth order are considered. Simulated results indicate that an ultra broadband supercontinuum spectrum spanning 1-16 μm has been achieved using a 10 mm long photonic crystal fiber structure pumped with 50 fs secant hyperbolic pulses of 3 kW at a -30  dB spectral intensity level. To the best of our knowledge, this is the first time such broad supercontinuum spectrum has been reported. This ultra broadband mid-IR supercontinuum spectrum is applicable in many diverse fields, including medical, defense, metrology, and spectroscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app