Add like
Add dislike
Add to saved papers

RNAi-mediated knockdown of MCM7 gene on CML cells and its therapeutic potential for leukemia.

Medical Oncology 2017 Februrary
MCM7 is one of the subunits of MCM2-7 complex, which is essential to DNA replication licensing and the control of cell cycle progression. It has been demonstrated that MCM7 participates in mRNA transcription and DNA damage regulation as well. MCM7 gene is found to be over-expressed in multiple cancers, but there are few reports about its effect in leukemia. Recent studies have proven that MCM7 expression has a relationship with diagnosis and prognosis, which has led to their potential clinical application as a marker for cancer screening. RNA interference (RNAi) is a biological process in which RNA molecules inhibit gene expression, typically by causing the destruction of specific mRNA molecules. It is a valuable research tool, which is widely used in cell culture and living organisms as well as in medicine recent years. It is indicated that RNAi application for targeting functional carcinogenic molecules, tumor resistance to chemotherapy and radiotherapy is required in cancer treatment. Gene products knockdown by RNAi technology exerts anti-proliferative and pro-apoptotic effects upon cell culture systems, animal models and in clinical trials in the most studies. In the present study, we found that MCM7 highly expressed in K562 cells rather than that in normal neutrophils. Thus, lentivirus-mediated shRNA targeting MCM7 was used to suppress its endogenous expression in K562 cells and develop a novel therapeutic strategy for leukemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app