Add like
Add dislike
Add to saved papers

Simultaneous analysis of bisphenol A based compounds and other monomers leaching from resin-based dental materials by UHPLC-MS/MS.

Resin-based dental materials have raised debates concerning their safety and biocompatibility, resulting in a growing necessity of profound knowledge on the quantity of released compounds into the oral cavity. In this context, the aim of this study was to develop a comprehensive and reliable procedure based on liquid chromatography with mass spectrometry for the simultaneous analysis of various leached compounds (including bisphenol A based compounds) in samples from in vitro experiments. Different experiments were performed to determine the optimal analytical parameters, comprising mass spectrometry parameters, chromatographic separation conditions, and sample preparation. Four internal standards were used as follows: deuterated diethyl phthalate and bisphenol A (commercially available), and deuterated analogues of triethylene glycol dimethacrylate and urethane dimethacrylate (custom-made). The optimized method was validated for linearity of the calibration curves and the associated correlation coefficient, lower limit of quantification, higher limit of quantification, and intra- and interassay accuracy and precision. Additionally, the developed liquid chromatography with tandem mass spectrometry method was applied to the analysis of leaching compounds from four resin-based dental materials. The results indicated that this method is suitable for the analysis of different target compounds leaching from dental materials. This method might serve as a valuable basis for quick and accurate quantification of leached compounds from resin-based dental materials in biological samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app