Add like
Add dislike
Add to saved papers

Comparative Developmental Toxicity of Desalination Brine and Sulfate-Dominated Saltwater in a Euryhaline Fish.

Desalination is a promising sustainable solution to meet growing water needs of cities across the United States. However, the environmental impacts of the resulting filtrate (brine) discharged to surface water need to be evaluated before large-scale desalination can be successful in the United States. Developing fish are especially sensitive to changes in salinity and varying ionic composition. Limited research is available on the impacts of hypersalinity on chronic vertebrate embryonic development, particularly on sublethal effects. To investigate this, Japanese medaka (Oryzias latipes) embryos were treated with: (1) graphite filtered freshwater; (2) artificial seawater [17, 35, 42, 56, and 70 parts per thousand (ppt)]; (3) effluent from a desalination facility at Monterey Bay Aquarium, CA, diluted to 75, 50, and 25% with 35 ppt artificial seawater to simulate mixing (39, 42, 46, and 50 ppt); (4) artificial San Joaquin River water (CA, USA) (9, 13, and 17 ppt); and (5) artificial San Joaquin River water diluted to 75, 50, and 25% with artificial seawater to simulate estuarine mixing in the San Francisco Bay (13, 19, 24, and 30 ppt). Percent hatch, survival post hatch, deformities, swim bladder inflation, and median day to hatch were recorded to calculate EC50 (50% effect concentration) and NOEC (no observable effect concentration) values. No significant difference was observed between artificial seawater and Monterey Bay aquarium effluent (EC50 = 45-55 ppt). However, San Joaquin River water decreased survival post hatch and increased deformities in comparison to artificial seawater and San Joaquin River water mixed with seawater, suggesting that unique ion compositions may play a role in embryo and larval toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app