Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quantification of Human Cortical Bone Bound and Free Water in Vivo with Ultrashort Echo Time MR Imaging: A Model-based Approach.

Radiology 2017 June
Purpose To quantify free and bound water components of cortical bone with a model-based numeric approach with use of ultrashort echo time (UTE) magnetic resonance (MR) imaging in vivo in order to introduce a new predictor for age-related deterioration of cortical bone structure. Materials and Methods Human studies were compliant with HIPAA and approved by the institutional review board. Dual-repetition time three-dimensional hybrid-radial UTE imaging was performed, followed by the application of postprocessing algorithms, to quantify free and bound water parameters (concentration [ρ] and longitudinal relaxation time [T1]) of human cortical bone in vivo. The postprocessing algorithms included the decomposition of bulk equations into free- and bound-associated equations and solving resulted inverse problem by using evolutionary strategy methods. To test the validity of the introduced biomarker, it was measured in 40 healthy women by using the proposed method, and associations among parameters were evaluated with the Pearson correlation coefficient. Results The mean free water concentration, bound water concentration, free water T1, and bound water T1 in the recruited population were 5.9%, 19.6%, 306.79 msec, and 162.47 msec, respectively. All reported values were in good agreement with those in the literature. Cortical bone free water T1 (R2 = 0.72) and cortical bone free water concentration (R2 = 0.62) showed strong positive correlations with age. Conclusion The cortical bone free water concentration and free water T1 derived with UTE imaging are good predictors of age-related deterioration of cortical bone structure and are potentially superior to previously introduced measures such as bone water concentration and suppression ratio. © RSNA, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app