Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process.

Water Research 2017 March 16
This study presents an innovative biosensor that was developed on the basis of a microbial electrolysis cell for fast and reliable measurement of volatile fatty acids (VFA) during anaerobic digestion (AD) process. The bio-electrolytic sensor was first tested with synthetic wastewater containing varying concentrations of VFA. A linear correlation (R2  = 0.99) between current densities (0.03 ± 0.01 to 2.43 ± 0.12 A/m2 ) and VFA concentrations (5-100 mM) was found. The sensor performance was then investigated under different affecting parameters such as the external voltage, VFA composition ratio, and ionic strength. Linear relationship between the current density and VFA concentrations was always observed. Furthermore, the bio-electrolytic sensor proved ability to handle interruptions such as the presence of complex organic matter, anode exposure to oxygen and low pH. Finally, the sensor was applied to monitor VFA concentrations in a lab-scale AD reactor for a month. The VFA measurements from the sensor correlated well with those from GC analysis which proved the accuracy of the system. Since hydrogen was produced in the cathode as byproduct during monitoring, the system could be energy self-sufficient. Considering the high accuracy, short response time, long-term stability and additional benefit of H2 production, this bio-electrolytic sensor could be a simple and cost-effective method for VFA monitoring during AD and other anaerobic processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app