Add like
Add dislike
Add to saved papers

Chromium tolerance, oxidative stress response, morphological characteristics, and FTIR studies of phytopathogenic fungus Sclerotium rolfsii.

Sclerotium rolfsii is one of the most destructive fungal plant pathogens that can infect over 500 plants and can adapt to diverse environmental conditions. The present research work was carried out to evaluate the impact of both hexa- and trivalent chromium (Cr) on growth, morphology, enzymatic characteristics, and metal accumulation in S. rolfsii under laboratory conditions. Experiments were performed in both malt extract broth and agar growth medium amended with six different concentrations (10, 20, 40, 60, 80, and 100 ppm) of each Cr(III) and Cr(VI) ions inoculated with fungus and incubated for 6-7 days at 25 ± 3 °C. In broth medium, the total protein content was declined and activities of antioxidant enzymes were increased with an increase in metal concentrations. Lower concentrations (10 ppm) of the metal ions stimulated the growth of fungus and higher concentrations (60-100) inhibited it. The Fourier transform infrared spectroscopy (FTIR) assessment showed hydroxyl, carboxyl, and amine groups as major metal binding sites. In agar medium, tolerance index was decreased up to 0.56 at 10-80 ppm of Cr(III) and up to 0.62 at 10-60 ppm of Cr(VI). Considerable modifications were observed in hyphal and sclerotial morphology with an increase in concentration of metal ions. The current study concluded that interference of Cr with growth and physiological process of S. rolfsii could affect its infection level on its host plant. This study provides important information regarding cultivation of susceptible plant varieties in Cr-polluted soil as evidenced by pathogen growth up to 50 ppm of Cr(III) and Cr(VI) ions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app