Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diminished force production and mitochondrial respiratory deficits are strain-dependent myopathies of subacute limb ischemia.

OBJECTIVE: Reduced skeletal muscle mitochondrial function might be a contributing mechanism to the myopathy and activity based limitations that typically plague patients with peripheral arterial disease (PAD). We hypothesized that mitochondrial dysfunction, myofiber atrophy, and muscle contractile deficits are inherently determined by the genetic background of regenerating ischemic mouse skeletal muscle, similar to how patient genetics affect the distribution of disease severity with clinical PAD.

METHODS: Genetically ischemia protected (C57BL/6) and susceptible (BALB/c) mice underwent either unilateral subacute hind limb ischemia (SLI) or myotoxic injury (cardiotoxin) for 28 days. Limbs were monitored for blood flow and tissue oxygen saturation and tissue was collected for the assessment of histology, muscle contractile force, gene expression, mitochondrial content, and respiratory function.

RESULTS: Despite similar tissue O2 saturation and mitochondrial content between strains, BALB/c mice suffered persistent ischemic myofiber atrophy (55.3% of C57BL/6) and muscle contractile deficits (approximately 25% of C57BL/6 across multiple stimulation frequencies). SLI also reduced BALB/c mitochondrial respiratory capacity, assessed in either isolated mitochondria (58.3% of C57BL/6 at SLI on day (d)7, 59.1% of C57BL/6 at SLI d28 across multiple conditions) or permeabilized myofibers (38.9% of C57BL/6 at SLI d7; 76.2% of C57BL/6 at SLI d28 across multiple conditions). SLI also resulted in decreased calcium retention capacity (56.0% of C57BL/6) in BALB/c mitochondria. Nonischemic cardiotoxin injury revealed similar recovery of myofiber area, contractile force, mitochondrial respiratory capacity, and calcium retention between strains.

CONCLUSIONS: Ischemia-susceptible BALB/c mice suffered persistent muscle atrophy, impaired muscle function, and mitochondrial respiratory deficits during SLI. Interestingly, parental strain susceptibility to myopathy appears specific to regenerative insults including an ischemic component. Our findings indicate that the functional deficits that plague PAD patients could include mitochondrial respiratory deficits genetically inherent to the regenerating muscle myofibers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app