Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Neuroprotection of agomelatine against cerebral ischemia/reperfusion injury through an antiapoptotic pathway in rat.

Agomelatine is an agonist of the melatonergic MT1/MT2 receptors and an antagonist of the serotonergic 5-HT receptors. Its actions mimic melatonin in antioxidative and anti-inflammation. However, the protective mechanism of agomelatine in ischemic/reperfusion (I/R) injury has not been investigated. In this study, cerebral I/R injury rats were induced by middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion. The rats were randomly divided into 6 groups (12 rats per group): sham-operated; vehicle-treated I/R; 20 mg/kg, 40 mg/kg, and 80 mg/kg agomelatine-treated I/R; and 10 mg/kg melatonin-treated I/R. Agomelatine and melatonin were intraperitoneally administrated to the rats 1 h before MCAO induction. After reperfusion for 24 h, the brain samples were harvested for evaluating the infarct volume, histological changes, terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining as well as cleaved caspase-3, Bax, Bcl-XL , nuclear factor erythroid-2-related factor (Nrf2), and heme oxygenase (HO-1) levels. Agomelatine treatment significantly decreased apoptosis, with decreases in Bax and cleaved caspase-3, and increased Bcl-XL , along with a decrease in apoptotic neuronal cells. Moreover, agomelatine was also found to markedly increase the expression of HO-1, the antioxidative enzymes, and the activity of superoxide dismutase (SOD) mediated by Nrf2 pathway. Agomelatine treatment protects the brain from cerebral I/R injury by suppressing apoptosis and agomelatine has antioxidant properties. Hence, there exists the possibility of developing agomelatine as a potential candidate for treating ischemic stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app