Add like
Add dislike
Add to saved papers

Synthesis and characterization of asymmetrical gemini surfactants.

The effect of variation in the length of surfactant hydrocarbon tail groups was tested in a series of dissymmetric gemini surfactants (N1 -alkyl N1 ,N1 ,N3 ,N3 -tetramethyl-N3 -(6-pyren-6yl)-hexyl)propane-1,3-diammonium dibromide designated as Cm C3 Cn Br, with m = hexyl pyrene, and n = 8, 12, 14, 16, and 18. The aggregation properties of these surfactants have been investigated by means of1 H NMR, fluorescence spectroscopy, surface tension and electrical conductivity measurements. The critical micelle concentration (CMC) was determined using surface tension and confirmed using the specific conductance method. Krafft temperatures and the degree of micelle ionization (α) were obtained from specific conductance measurements. With an increase of the dissymmetry (m/n) ratio, the CMC decreased linearly and an increase in the Krafft temperatures was observed for all of the gemini surfactants. α values for the dissymmetric GS were higher than those of the m-3-m counterparts, which may be attributed to enhanced micelle-micelle interactions that arise from increased hydrophobicity of the hydrocarbon chains. The introduction of the bulky pyrenyl tail group resulted in much lower CMC values compared to their symmetrical counterparts affecting the packing of these surfactants at the air/water interface, which resulted in high-ordered structures (lamellar and inverted micelles). This in turn affected the thermodynamic parameters of the micellization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app