Add like
Add dislike
Add to saved papers

Using "Functional" Target Coordinates of the Subthalamic Nucleus to Assess the Indirect and Direct Methods of the Preoperative Planning: Do the Anatomical and Functional Targets Coincide?

Brain Sciences 2016 December 22
OBJECTIVE: To answer the question of whether the anatomical center of the subthalamic nucleus (STN), as calculated indirectly from stereotactic atlases or by direct visualization on magnetic resonance imaging (MRI), corresponds to the best functional target. Since the neighboring red nucleus (RN) is well visualized on MRI, we studied the relationships of the final target to its different borders.

METHODS: We analyzed the data of 23 PD patients (46 targets) who underwent bilateral frame-based STN deep brain stimulation (DBS) procedure with microelectrode recording guidance. We calculated coordinates of the active contact on DBS electrode on postoperative MRI, which we referred to as the final "functional/optimal" target. The coordinates calculated by the atlas-based "indirect" and "direct" methods, as well as the coordinates of the different RN borders were compared to these final coordinates.

RESULTS: The mean ± SD of the final target coordinates was 11.7 ± 1.5 mm lateral (X), 2.4 ± 1.5 mm posterior (Y), and 6.1 ± 1.7 mm inferior to the mid-commissural point (Z). No significant differences were found between the "indirect" X, Z coordinates and those of the final targets. The "indirect" Y coordinate was significantly posterior to Y of the final target, with mean difference of 0.6 mm (p = 0.014). No significant differences were found between the "direct" X, Y, and Z coordinates and those of the final targets.

CONCLUSIONS: The functional STN target is located in direct proximity to its anatomical center. During preoperative targeting, we recommend using the "direct" method, and taking into consideration the relationships of the final target to the mid-commissural point (MCP) and the different RN borders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app