Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Suppression of Frost Nucleation Achieved Using the Nanoengineered Integral Humidity Sink Effect.

ACS Nano 2017 January 25
Inhibition of frost formation is important for increasing efficiency of refrigeration systems and heat exchangers, as well as for preventing the rapid icing over of water-repellant coatings that are designed to prevent accumulation of rime and glaze. From a thermodynamic point of view, this task can be achieved by either increasing hydrophobicity of the surface or decreasing the concentration of water vapor above it. The first approach has been studied in depth, but so far has not yielded a robust solution to the problem of frost formation. In this work, we systematically explore how frost growth can be inhibited by controlling water vapor concentration using bilayer coatings with a porous exterior covering a hygroscopic liquid-infused layer. We lay the theoretical foundation and provide experimental validation of the mass transport mechanism that governs the integral humidity sink effect based on this coating platform as well as reveal intriguing sizing effects about this system. We show that the concentration profile above periodically spaced pores is governed by the sink and source concentrations and two geometrical parameters: the nondimensional pore size and the ratio of the pore spacing to the boundary layer thickness. We demonstrate that when the ratio of the pore spacing to the boundary layer thickness vanishes, as for the nanoporous bilayer coatings, the entire surface concentration becomes uniform and equal to the concentration set by the hygroscopic liquid. In other words, the surface concentration becomes completely independent of the nanopore size. We identified the threshold geometrical parameters for this condition and show that it can lead to a 65 K decrease in the nucleation onset surface temperature below the dew point. With this fundamental insight, we use bilayer coatings to nanoengineer the integral humidity sink effect to provide extreme antifrosting performance with up to a 2 h delay in nucleation onset at 263 K. The nanoporous bilayer coatings can be designed to combine optimal antifrosting functionality with a superhydrophobic water repelling exterior to provide coatings that can robustly prevent frost, rime, and glaze accumulation. By minimizing the required amount of antifreeze, this anti-icing method can have minimal operational cost and environmental impact.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app