Add like
Add dislike
Add to saved papers

Acidic cellular microenvironment modifies carcinogen-induced DNA damage and repair.

Chronic inflammation creates an acidic microenvironment, which plays an important role in cancer development. To investigate how low pH changes the cellular response to the carcinogen benzo[a]pyrene (B[a]P), we incubated human pulmonary epithelial cells (A549 and BEAS-2B) with nontoxic doses of B[a]P using culturing media of various pH's (extracellular pH (pHe ) of 7.8, 7.0, 6.5, 6.0 and 5.5) for 6, 24 and 48 h. In most incubations (pHe 7.0-6.5), the pH in the medium returned to the physiological pH 7.8 after 48 h, but at the lowest pH (pHe  < 6.0), this recovery was incomplete. Similar changes were observed for the intracellular pH (pHi ). We observed that acidic conditions delayed B[a]P metabolism and at t = 48 h, and the concentration of unmetabolized extracellular B[a]P and B[a]P-7,8-diol was significantly higher in acidic samples than under normal physiological conditions (pHe 7.8) for both cell lines. Cytochrome P450 (CYP1A1/CYP1B1) expression and its activity (ethoxyresorufin-O-deethylase activity) were repressed at low pHe after 6 and 24 h, but were significantly higher at t = 48 h. In addition, a DNA repair assay showed that the incision activity was ~80% inhibited for 6 h at low pHe and concomitant exposure to B[a]P. However, at t = 48 h, the incision activity recovered to more than 100% of the initial activity observed at neutral pHe . After 48 h, higher B[a]P-DNA adduct levels and γ-H2AX foci were observed at low pH samples than at pHe 7.8. In conclusion, acidic pH delayed the metabolism of B[a]P and inhibited DNA repair, ultimately leading to increased B[a]P-induced DNA damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app