Add like
Add dislike
Add to saved papers

Lack of evidence for tissue hypoxia as a contributing factor in anastomotic leak following colon anastomosis and segmental devascularization in rats.

PURPOSE: Current surgical dogma dictates that tissue ischemia and hypoxia are major contributing factors in anastomotic leak despite scant evidence. The aim of this study was to determine if tissue hypoxia is a feature of anastomotic leakage in rats following colon resection and segmental devascularization.

METHODS: Rats were randomly assigned to undergo sham operation, segmental colon devascularization alone, colectomy alone, or segmental devascularization plus colectomy. Tissue hypoxia present at the colon anastomosis site across the various treatment groups was determined at sacrifice on postoperative day 6. Pimonidazole HCl was injected 30 min prior to sacrifice. Anastomotic tissues were examined and scored for healing versus leakage using an anastomotic healing score (AHS). Collagen content, hypoxia, enteric smooth muscle and periendothelial stromal patterning, and apoptosis were evaluated histologically.

RESULTS: No differences in tissue hypoxia were noted in the 16% of anastomotic tissues with poor healing compared to the remaining 84% of rats whose anastomoses healed well. No significant changes were found in cell death in the submucosa of any group. Consistent with previous findings, poor healing was associated with lower collagen content. Submucosal thickness correlated with increased arteriole diameter (R 2  = 0.25, p < 0.005).

CONCLUSIONS: These results demonstrate that tissue hypoxia is not a distinctive feature of anastomotic tissues that fail to heal and leak, even when their blood supply is interrupted. These findings suggest that compensatory factors may mitigate the effects of ischemia and hypoxia during healing of anastomotic tissues and that the process of leakage involves factors beyond their acute effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app