Add like
Add dislike
Add to saved papers

Rottlerin exhibits antitumor activity via down-regulation of TAZ in non-small cell lung cancer.

Oncotarget 2017 January 32
Rottlerin, a polyphenolic compound derived from Mallotus philipinensis, has been reported to exhibit anti-tumor activities in a variety of human malignancies including NSCLC (non-small cell lung cancer). TAZ (transcriptional co-activator with PDZ-binding motif), one of the key activators in Hippo pathway, has been characterized as an oncoprotein. Therefore, inhibition of TAZ could be useful for the treatment of human cancers. In the current study, we aimed to explore whether rottlerin inhibits the expression of TAZ in NSCLC, leading to its anti-cancer activity. Multiple approaches were applied for determining the mechanism of rottlerin-mediated anti-tumor function, including cell growth assay, Flow cytometry, wound healing assay, invasion assay, Western blotting, and transfection. We found that rottlerin inhibited cell growth, triggered apoptosis, arrested cell cycle, and retarded cell invasion in NSCLC cells. Moreover, our results showed that overexpression of TAZ enhanced cell growth, stimulated apoptosis, and promoted cell migration and invasion. Consistently, inhibition of TAZ exhibited anti-tumor activity in NSCLC cells. Notably, we validated that rottlerin exerted its tumor suppressive function via inactivation of TAZ in NSCLC cells. Taken together, our study indicates that inhibition of TAZ by rottlerin could be a promising strategy for the prevention and therapy of NSCLC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app