Add like
Add dislike
Add to saved papers

Identification and functional characterization of the house finch interleukin-1β.

Interleukin-1β (IL-1β), an inflammatory cytokine of the IL-1 family, is primarily produced as a precursor protein by monocytes and macrophages, then matures and becomes activated through proteolytic catalysis. Although the biological characteristics of avian IL-1β are well known, little information is available about its biological role in songbird species such as house finches that are vulnerable to naturally-occurring inflammatory diseases. In this study, house finch IL-1β (HfIL-1β) was cloned, expressed, and its biological function examined. Both precursor and mature forms of HfIL-1β consisting of 269 and 162 amino acids, respectively, were amplified from total RNA of spleen and cloned into expression vectors. HfIL-1β showed high sequential and tertiary structural similarity to chicken homologue that allowed detection of the expressed mature recombinant HfIL-1β (rHfIL-1β) with anti-ChIL-1β antibody by immunoblot analysis. For further characterization, we used primary splenocytes and hepatocytes that are predominant sources of IL-1β upon stimulation, as well as suitable targets to stimulation by IL-1β. Isolated house finch splenocytes were stimulated with rHfIL-1β in the presence and absence of concanavalin A (Con A), RNA was extracted and transcript levels of Th1/Th2 cytokines and a chemokine were measured by qRT-PCR. The addition of rHfIL-1β induced significant enhancement of IL-2 transcript, a Th1 cytokine, while transcription of IL-1β and the Th2 cytokine IL-10 was slightly enhanced by rHfIL-1β treatment. rHfIL-1β also led to elevated levels of the chemokine CXCL1 and nitric oxide production regardless of co-stimulation with Con A. In addition, the production of the acute phase protein serum amyloid A and the antimicrobial peptide LEAP2 was observed in HfIL-1β-stimulated hepatocytes. Taken together, these observations revealed the basic functions of HfIL-1β including the stimulatory effect on cell proliferation, production of Th1/Th2 cytokines and acute phase proteins by immune cells, thus providing valuable insight into how HfIL-1β is involved in regulating inflammatory response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app