Add like
Add dislike
Add to saved papers

Physiological Responses of Salinity-Stressed Vibrio sp. and the Effect on the Biofilm Formation on a Nanofiltration Membrane.

This study evaluated the effects of salinity on the physiological characteristics of Vibrio sp. B2 and biofilm formation on nanofiltration (NF) membrane coupons used in the high recovery seawater desalination process. The test conditions were at 0.6, 1.2, and 2.4 M sodium chloride (NaCl), equivalent to salinity of seawater, brine at 50% and 75% water recovery, respectively. High salinity inhibited the cell growth rate but increased the viability and bacterial membrane integrity. In addition, protein and eDNA concentrations of salinity-stressed bacteria were increased at 1.2 and 2.4 M NaCl. In particular, protein concentration was linearly correlated with the NaCl concentration. Similarly, less biofilm formation on the NF membrane coupon (without permeation flux) was observed by the salinity-stressed bacteria; however, the production of extracellular polymeric substances (EPS) was significantly increased as compared to control, and protein was an influential factor for biofilm formation. This study shows that salinity-stressed bacteria have a high potential to cause biofouling on membrane surface as the bacteria still maintain the cell activity and overproduce EPS. The potential of biofilm formation by the salinity-stressed bacteria has not been reported. Therefore, the findings are important to understand the mechanisms of membrane biofouling in a high salinity environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app