Add like
Add dislike
Add to saved papers

The Electrophysiological Signature of Remember-Know Is Confounded with Memory Strength and Cannot Be Interpreted as Evidence for Dual-process Theory of Recognition.

The quantity and nature of the processes underlying recognition memory remains an open question. A majority of behavioral, neuropsychological, and brain studies have suggested that recognition memory is supported by two dissociable processes: recollection and familiarity. It has been conversely argued, however, that recollection and familiarity map onto a single continuum of mnemonic strength and hence that recognition memory is mediated by a single process. Previous electrophysiological studies found marked dissociations between recollection and familiarity, which have been widely held as corroborating the dual-process account. However, it remains unknown whether a strength interpretation can likewise apply for these findings. Here we describe an ERP study, using a modified remember-know (RK) procedure, which allowed us to control for mnemonic strength. We find that ERPs of high and low mnemonic strength mimicked the electrophysiological distinction between R and K responses, in a lateral positive component (LPC), 500-1000 msec poststimulus onset. Critically, when contrasting strength with RK experience, by comparing weak R to strong K responses, the electrophysiological signal mapped onto strength, not onto subjective RK experience. Invoking the LPC as support for dual-process accounts may, therefore, be amiss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app