Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Pharmacokinetics and derivation of an anticancer dosing regimen for the novel anti-cancer agent isobutyl-deoxynyboquinone (IB-DNQ), a NQO1 bioactivatable molecule, in the domestic felid species.

Isobutyl-deoxynyboquinone (IB-DNQ) is a selective substrate for NAD(P)H:quinone oxidoreductase (NQO1), an enzyme overexpressed in many solid tumors. Following activation by NQO1, IB-DNQ participates in a catalytic futile reduction/reoxidation cycle with consequent toxic reactive oxygen species generation within the tumor microenvironment. To elucidate the potential of IB-DNQ to serve as a novel anticancer agent, in vitro studies coupled with in vivo pharmacokinetic and toxicologic investigations in the domestic felid species were conducted to investigate the tractability of IB-DNQ as a translationally applicable anticancer agent. First, using feline oral squamous cell carcinoma (OSCC) as a comparative cancer model, expressions of NQO1 were characterized in not only human, but also feline OSCC tissue microarrays. Second, IB-DNQ mediated cytotoxicity in three immortalized feline OSCC cell lines were studied under dose-dependent and sequential exposure conditions. Third, the feasibility of administering IB-DNQ at doses predicted to achieve cytotoxic plasma concentrations and biologically relevant durations of exposure were investigated through pharmacokinetic and tolerability studies in healthy research felines. Intravenous administration of IB-DNQ at 1.0-2.0 mg/kg achieved peak plasma concentrations and durations of exposure reaching or exceeding predicted in vitro cytotoxic concentrations. Clinical adverse side effects including ptyalism and tachypnea exhibited during and post-IV infusion of IB-DNQ were transient and tolerable. Additionally, IB-DNQ administration did not produce acute or delayed-onset unacceptable hematologic, non-hematologic, or off-target oxidative toxicities. Collectively, the findings reported here within provide important safety and pharmacokinetic data to support the continued development of IB-DNQ as a novel anticancer strategy for NQO1 expressing cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app