Add like
Add dislike
Add to saved papers

Protein kinase C is involved with upstream signaling of methyl farnesoate for photoperiod-dependent sex determination in the water flea Daphnia pulex.

Biology Open 2017 Februrary 16
Sex determination of Daphnia pulex is decided by environmental conditions. We established a suitable experimental system for this study using D. pulex WTN6 strain, in which the sex of the offspring can be controlled by photoperiod. Long-day conditions induced females and short-day conditions induced males. Using this system, we previously found that methy farnesoate (MF), which is a putative innate juvenile hormone molecule in daphnids, is necessary for male sex determination and that protein kinase C (PKC) is a candidate factor of male sex determiner. In this study, we demonstrated that a PKC inhibitor [bisindolylmaleimide IV (BIM)] application strongly suppressed male offspring induction in the short-day condition. Moreover, co-treatment of BIM with MF revealed that PKC signaling acts upstream of MF signaling for male sex determination. This is the first experimental evidence that PKC is involved in the male sex determination process associated with methyl farnesoate signaling in daphnid species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app