Clinical Trial
Journal Article
Multicenter Study
Add like
Add dislike
Add to saved papers

Prospective evaluation of biodegradable polymeric sealant for intraoperative air leaks.

BACKGROUND: A biodegradable polymeric sealant has been previously shown to reduce postoperative air leaks after open pulmonary resection. The aim of this study was to evaluate safety and efficacy during minimally invasive pulmonary resection.

METHODS: In a multicenter prospective single-arm trial, 112 patients with a median age of 69 years (range 34-87 years) were treated with sealant for at least one intraoperative air leak after standard methods of repair (sutures, staples or cautery) following minimally invasive pulmonary resection (Video-Assisted Thoracic Surgery (VATS) or Robotic-Assisted). Patients were followed in hospital and 1 month after surgery for procedure-related and device-related complications and presence of air leak.

RESULTS: Forty patients had VATS and 72 patients had Robotic-Assisted procedures with the majority (80/112, 71%) undergoing anatomic resection (61 lobectomy, 13 segmentectomy, 6 bilobectomy). There were no device-related adverse events. The overall morbidity rate was 41% (46/112), with major complications occurring in 16.1% (18/112). In-hospital mortality and 30-day mortality were 1.9% (2/103). The majority of intraoperative air leaks (107/133, 81%) were sealed after sealant application, and an additional 16% (21/133) were considered reduced. Forty-nine percent of patients (55/112) were free of air leak throughout the entire postoperative study period. Median chest tube duration was 2 days (range 1 - 46 days), and median length of hospitalization was 3 days (range 1 - 20 days).

CONCLUSIONS: This study demonstrated that use of a biodegradable polymer for closure of intraoperative air leaks as an adjunct to standard methods is safe and effective following minimally invasive pulmonary resection.

TRIAL REGISTRATION: ClinicalTrials.gov: NCT01867658 . Registered 3 May 2013.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app