Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enhancing functional expression of codon-optimized heterologous enzymes in Escherichia coli BL21(DE3) by selective introduction of synonymous rare codons.

Rare codon in a heterologous gene may cause premature termination of protein synthesis, misincorporation of amino acids, and/or slow translation of mRNA, decreasing the heterologous protein expression. However, its hypothetical function pertaining to functional protein folding has been barely reported. Here, we investigated the effects of selective introduction of synonymous rare codons (SRCs) to two codon-optimized (i.e., rare codon-free) genes sucrose phosphorylase (SP) gene from Thermoanaerobacterium thermosaccharolyticum and amidohydrolase gene from Streptomyces caatingaensis on their expression levels in Escherichia coli BL21(DE3). We investigated the introduction of a single SRC to the coding regions of alpha-helix, beta-strand, or linker in the first half of rare codon-free sp and ah gene. The introduction of a single SRC in the beginning of the coding regions of beta-strand greatly enhanced their soluble expression levels as compared to the other regions. Also, we applied directed evolution to test multi-SRC-containing sp gene mutants for enhanced soluble SP expression levels. To easily identify the soluble SP expression level of colonies growing on Petri dishes, mCherry fluorescent protein was used as a SP-folding reporter when it was fused to the 3' end of the sp gene mutant libraries. After three rounds of screening, the best sp gene mutant containing nine SRCs exhibited an approximately six-fold enhancement in soluble protein expression level as compared to the wild-type and rare codon-free sp control. This study suggests that the selective introduction of SRCs can attenuate translation at specific points and such discontinuous attenuation can temporally separate the translation of segments of the peptide chains and actively coordinates their co-translational folding, resulting in enhanced functional protein expression. Biotechnol. Bioeng. 2017;114: 1054-1064. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app