Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Atomic Structure and Dynamics of Epitaxial 2D Crystalline Gold on Graphene at Elevated Temperatures.

ACS Nano 2016 November 23
The atomic level dynamics of gold on graphene is studied at temperatures up to 800 °C using an in situ heating holder within an aberration-corrected transmission electron microscope. At this high temperature, individual gold atoms and nanoclusters are mobile across the surface of graphene and attach to defect sites and migrate along the edges of holes in graphene. Gold nanoclusters on clean graphene show crystallinity at temperatures above their predicted melting point for equivalent sized clusters due to strong epitaxial interactions with the underlying graphene lattice. Gold nanoclusters anchored to defect sites in graphene exhibit discrete rotations between fixed orientations while maintaining epitaxial correlations to the graphene. We show that gold nanoclusters can be two-dimensional with monolayer thickness and switch their crystal structure between two different phases. These results have important implications on the use of gold nanoclusters on graphene at elevated temperatures for applications, such as catalysis and plasmonics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app