Add like
Add dislike
Add to saved papers

Effect of Rheology and Poloxamers Properties on Release of Drugs from Silicon Dioxide Gel-Filled Hard Gelatin Capsules-A Further Enhancement of Viability of Liquid Semisolid Matrix Technology.

AAPS PharmSciTech 2017 August
The liquid and semisolid matrix technology, filling liquids, semi-solids and gels in hard gelatin capsule are promising, thus, there is a need of enhanced research interest in the technology. Therefore, the present study was aimed to investigate isoniazid (freely soluble) and metronidazole (slightly soluble) gels filled in hard gelatin capsules for the effect of poloxamers of different viscosities on release of the drugs. Gel of each drug (10% w/w, particle size 180-250 μm), prepared by mixing poloxamer and 8% w/w hydrophilic silicon dioxide (Aerosil® A200), was assessed for rheology, dispersion stability and release profile. Both the drugs remained dispersed in majority of gels for more than 30 days, and dispersions were depended on gels' viscosity, which was further depended on viscosity of poloxamers. A small change in viscosity was noted in gels on storage. FTIR spectra indicated no interactions between components of the gels. The gels exhibited thixotropic and shear-thinning behaviour, which were suitable for filling in hard gelatin capsules without any leakage from the capsules. The release of both drugs from the phase-stable gels for 30 days followed first-order kinetics and was found to be correlated to drugs' solubility, poloxamers' viscosity, polyoxyethylene contents and proportion of block copolymer (poloxamers) in the gels. The findings of the present study indicated that release of drugs of different solubilities (isoniazid and metronidazole) might be modified from gels using different poloxamers and Aerosil® A200.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app