Add like
Add dislike
Add to saved papers

Denaturing action of adjuvant affects specificity of polyclonal antibodies.

Influence of the immunization procedure on the specificity of the produced antibodies towards different conformations of the antigen was investigated. It was demonstrated that intravenous immunization of a rabbit with an adjuvant-free solution of recombinant sperm-specific glyceraldehyde-3-phosphate dehydrogenase (dN-GAPDS) resulted in production of antibodies recognizing only native conformation of dN-GAPDS and exhibiting no cross-reaction with somatic isoenzyme of glyceraldehyde-3-phosphate dehydrogenase. A subcutaneous immunization with human dN-GAPDS mixed with Freund's complete adjuvant yielded antibodies recognizing both native and denatured conformation of dN-GAPDS. The oil component of the adjuvant was shown to cause inactivation and partial denaturation of dN-GAPDS, leading to exposure of the epitopes that are masked in the native protein, which resulted in production of the antibodies to the denatured antigen. These results may be of importance for biochemical research that often require polyclonal antibodies recognizing different conformations of antigens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app