Add like
Add dislike
Add to saved papers

Modeling Heavy-Ion Impairment of Hippocampal Neurogenesis after Acute and Fractionated Irradiation.

Radiation Research 2016 December
Radiation-induced impairment of neurogenesis in the hippocampal dentate gyrus is a concern due to its reported association with cognitive detriments after radiotherapy for brain cancers and the possible risks to astronauts chronically exposed to space radiation. Here, we have extended our recent work in a mouse model of impaired neurogenesis after exposure to low-linear energy transfer (LET) radiation to heavy ion irradiation. To our knowledge, this is the first report of a predictive mathematical model of radiation-induced changes to neurogenesis for a variety of radiation types after acute or fractionated irradiation. We used a system of nonlinear ordinary differential equations (ODEs) to represent age, time after exposure and dose-dependent changes to several cell populations participating in neurogenesis, as reported in mouse experiments. We considered four compartments to model hippocampal neurogenesis and, consequently, the effects of radiation in altering neurogenesis: 1. neural stem cells (NSCs); 2. neuronal progenitor cells or neuroblasts (NB); 3. immature neurons (ImN); and 4. glioblasts (GB), with additional consideration of microglial activation. The model describes the negative feedback regulation on early and late neuronal proliferation after irradiation, and the dynamics of the age dependence of neurogenesis. We compared our model to experimental data for X rays, and protons, carbon and iron particles, including data for fractionated iron-particle irradiation. Heavy-ion irradiation is predicted to lead to poor recovery or no recovery from impaired neurogenesis at doses as low as 0.5 Gy in mice. This is only partially ameliorated by dose fractionation, which suggests important implications for Hardon therapy near the Bragg peak, and possibly for space radiation exposures as well. Predictions of the threshold doses where neurogenesis recovery fails for given radiation types are described, and the role of subthreshold transient impairments are briefly discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app