Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential Expression of Bcl-2 in the Cochlea and Auditory Cortex of a Mouse Model of Age-Related Hearing Loss.

Bcl-2, the first gene shown to be involved in apoptosis, is a potent regulator of cell survival and known to have protective effects against a variety of age-related diseases. However, the possible relationship between hearing and Bcl-2 expression in the cochlea or auditory cortex of C57BL/6 mice, a mouse model of age-related hearing loss, is still unknown. Using RT-PCR, immunohistochemistry, and Western blot analysis, our results show that Bcl-2 is strongly expressed in the inner hair cells and spiral ganglion neurons of young mice. In addition, moderate Bcl-2 expression is also detected in the outer hair cells and in the neurons of the auditory cortex. A significant reduction of Bcl-2 expression in the cochlea or auditory cortex is also associated with elevated hearing thresholds and hair cell loss during aging. The expression pattern of Bcl-2 in the peripheral and central auditory systems suggests that Bcl-2 may play an important role in auditory function serving as a protective molecule against age-related hearing loss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app