Add like
Add dislike
Add to saved papers

Design of PVP/VA S-630 based tadalafil solid dispersion to enhance the dissolution rate.

Tadalafil (TDF) is a Biopharmaceutics Classification System (BCS) class II drug; the efficacy thereof is critically limited by inherent poor water solubility. Solid dispersion (SD) techniques are widely used to improve the bioavailability of drugs that are poorly water-soluble. Herein, we used an SD technique to improve the solubility and in vitro dissolution rate of TDF; a solvent evaporation method was applied involving the use of hydrophilic carriers (PVP/VA S-630) and assistants (malic acid or meglumine). The TDF-SD formulations were evaluated in terms of the solubility, in vitro dissolution, and stability. Physical properties were confirmed by field-emission scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy (FT-IR). TDF-SD formulations containing assistants (malic acid or meglumine) and various solubilizers exhibited significantly enhanced solubility in distilled water (DW) (up to 27.3-fold; 18.5±0.16μg/mL with PVP/VA S-630) compared with TDF alone (0.73±0.08μg/mL). However, the dissolution rate of malic acid based formulation was decreased as the PVP/VA S-630 content increased compared to meglumine based formulation. Thus, the optimal TDF-SD formulation (TDF/meglumine/PVP/VA S-630/Aerosil 200: 1/3/5/3) exhibited a greater dissolution rate (89.1±3.9%) than TDF alone (6.2±2.5%) and Cialis(®) powder (16.0±1.9%) in DW. The final TDF-SD formulation was amorphous in nature and exhibited good stability. In conclusion, TDF-SD was successfully improved in vitro dissolution rate of TDF compared to commercial products (Cialis(®)) in the dissolution media without sodium lauryl sulfate (SLS).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app