Add like
Add dislike
Add to saved papers

Observation of Collective Coupling between an Engineered Ensemble of Macroscopic Artificial Atoms and a Superconducting Resonator.

Physical Review Letters 2016 November 19
The hybridization of distinct quantum systems is now seen as an effective way to engineer the properties of an entire system leading to applications in quantum metamaterials, quantum simulation, and quantum metrology. Recent improvements in both fabrication techniques and qubit design have allowed the community to consider coupling large ensembles of artificial atoms, such as superconducting qubits, to a resonator. Here, we demonstrate the coherent coupling between a microwave resonator and a macroscopic ensemble composed of several thousand superconducting flux qubits, where we observe a large dispersive frequency shift in the spectrum of 250 MHz. We achieve the large dispersive shift with a collective enhancement of the coupling strength between the resonator and qubits. These results represent the largest number of coupled superconducting qubits realized so far.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app