Add like
Add dislike
Add to saved papers

Dose-Dependent Protective and Inductive Effects
of Xanthohumol on Oxidative DNA Damage in
Saccharomyces cerevisiae.

The effect of xanthohumol, a prenylflavonoid isolated from the hop plant (Humulus lupulus L.), on Saccharomyces cerevisiae DNA oxidative damage and viability was evaluated. Yeast cultures under oxidative stress, induced by H2O2, displayed stronger growth in the presence of 5 mg/L of xanthohumol than cultures with only H2O2. Likewise, DNA damage assessed by the comet assay was significantly lower in cells co-incubated with xanthohumol and H2O2. Accordingly, fluorescence of dichlorofluorescein in cells treated with H2O2 and xanthohumol was considerably lower than in cells exclusively treated with H2O2, indicative of a reactive oxygen species scavenging mechanism and consequent formation of oxidation products, as detected by mass spectrometry. However, at concentrations above 5 mg/L, xanthohumol elicited an opposite effect, leading to a slower growth rate and significant increase in DNA damage. A yeast yap1 deletion mutant strain sensitive to oxidative stress grew more slowly in the presence of at least 5 mg/L of xanthohumol than cultures of the wild type, suggesting that xanthohumol toxicity is mediated by oxidative stress. This evidence provides further insight into the impact of xanthohumol on yeast cells, supporting dose-dependent antioxidant/antigenotoxic and prooxidant/genotoxic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app