Add like
Add dislike
Add to saved papers

MicroRNA-210 Enhances Fibrous Cap Stability in Advanced Atherosclerotic Lesions.

Circulation Research 2017 Februrary 18
RATIONALE: In the search for markers and modulators of vascular disease, microRNAs (miRNAs) have emerged as potent therapeutic targets.

OBJECTIVE: To investigate miRNAs of clinical interest in patients with unstable carotid stenosis at risk of stroke.

METHODS AND RESULTS: Using patient material from the BiKE (Biobank of Karolinska Endarterectomies), we profiled miRNA expression in patients with stable versus unstable carotid plaque. A polymerase chain reaction-based miRNA array of plasma, sampled at the carotid lesion site, identified 8 deregulated miRNAs (miR-15b, miR-29c, miR-30c/d, miR-150, miR-191, miR-210, and miR-500). miR-210 was the most significantly downregulated miRNA in local plasma material. Laser capture microdissection and in situ hybridization revealed a distinct localization of miR-210 in fibrous caps. We confirmed that miR-210 directly targets the tumor suppressor gene APC (adenomatous polyposis coli), thereby affecting Wnt (Wingless-related integration site) signaling and regulating smooth muscle cell survival, as well as differentiation in advanced atherosclerotic lesions. Substantial changes in arterial miR-210 were detectable in 2 rodent models of vascular remodeling and plaque rupture. Modulating miR-210 in vitro and in vivo improved fibrous cap stability with implications for vascular disease.

CONCLUSIONS: An unstable carotid plaque at risk of stroke is characterized by low expression of miR-210. miR-210 contributes to stabilizing carotid plaques through inhibition of APC, ensuring smooth muscle cell survival. We present local delivery of miR-210 as a therapeutic approach for prevention of atherothrombotic vascular events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app