Add like
Add dislike
Add to saved papers

Anticonvulsant effect of dextrometrophan on pentylenetetrazole-induced seizures in mice: Involvement of nitric oxide and N-methyl-d-aspartate receptors.

Dextrometrophan (DM), widely used as an antitussive, has recently generated interest as an anticonvulsant drug. Some effects of dextrometrophan are associated with alterations in several pathways, such as inhibition of nitric oxide synthase (NOS) enzyme and N-methyl d-aspartate (NMDA) receptors. In this study, we aimed to investigate the anticonvulsant effect of acute administration of dextrometrophan on pentylenetetrazole (PTZ)-induced seizures and the probable involvement of the nitric oxide (NO) pathway and NMDA receptors in this effect. For this purpose, seizures were induced by intravenous PTZ infusion. All drugs were administrated by intraperitoneal (i.p.) route before PTZ injection. Our results demonstrate that acute DM treatment (10-100mg/kg) increased the seizure threshold. In addition, the nonselective NOS inhibitor L-NAME (10mg/kg) and the neural NOS inhibitor, 7-nitroindazole (40mg/kg), at doses that had no effect on seizure threshold, augmented the anticonvulsant effect of DM (3mg/kg), while the inducible NOS inhibitor, aminoguanidine (100mg/kg), did not affect the anticonvulsant effect of DM. Moreover, the NOS substrate l-arginine (60mg/kg) blunted the anticonvulsant effect of DM (100mg/kg). Also, NMDA antagonists, ketamine (0.5mg/kg) and MK-801 (0.05mg/kg), augmented the anticonvulsant effect of DM (3mg/kg). In conclusion, we demonstrated that the anticonvulsant effect of DM is mediated by a decline in neural nitric oxide activity and inhibition of NMDA receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app