Add like
Add dislike
Add to saved papers

Multifunctional gold-nanoparticles: A nanovectorization tool for the targeted delivery of novel chemotherapeutic agents.

Due to their small size and unique properties, multifunctional nanoparticles arise as versatile delivery systems easily grafted with a vast array of functional moieties, such as anticancer cytotoxic chemotherapeutics and targeting agents. Here, we formulated a multifunctional gold-nanoparticle (AuNP) system composed of a monoclonal antibody against epidermal growth factor receptor (EGFR) (anti-EGFR D-11) for active targeting and a Co(II) coordination compound [CoCl(H2 O)(phendione)2 ][BF4 ] (phendione=1,10-phenanthroline-5,6-dione) (TS265) with proven antiproliferative activity towards cancer cells (designated as TargetNanoTS265). The efficacy of this nanoformulation, and the non-targeted counterpart (NanoTS265), were evaluated in vitro using cancer cell models and in vivo using mice xenografts. Compared to the free compound, both nanoformulations (TargetNanoTS265 and NanoTS265) efficiently delivered the cytotoxic cargo in a controlled selective manner due to the active targeting, boosting tumor cytotoxicity. Treatment of HCT116-derived xenografts tumors with TargetNanoTS265 led to 93% tumor reduction. This simple conceptual nanoformulation demonstrates the potential of nanovectorization of chemotherapeutics via simple assembly onto AuNPs of BSA/HAS-drug conjugates that may easily be expanded to suit other cargo of novel compounds that require optimized controlled delivery to cancer target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app